首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12012篇
  免费   2080篇
  国内免费   2246篇
化学   11859篇
晶体学   421篇
力学   381篇
综合类   109篇
数学   1038篇
物理学   2530篇
  2024年   22篇
  2023年   209篇
  2022年   339篇
  2021年   564篇
  2020年   822篇
  2019年   610篇
  2018年   527篇
  2017年   508篇
  2016年   719篇
  2015年   710篇
  2014年   724篇
  2013年   1298篇
  2012年   758篇
  2011年   704篇
  2010年   628篇
  2009年   741篇
  2008年   756篇
  2007年   817篇
  2006年   748篇
  2005年   689篇
  2004年   639篇
  2003年   523篇
  2002年   361篇
  2001年   265篇
  2000年   227篇
  1999年   212篇
  1998年   162篇
  1997年   159篇
  1996年   158篇
  1995年   155篇
  1994年   93篇
  1993年   73篇
  1992年   67篇
  1991年   41篇
  1990年   40篇
  1989年   29篇
  1988年   27篇
  1987年   29篇
  1986年   22篇
  1985年   42篇
  1984年   25篇
  1983年   11篇
  1982年   15篇
  1981年   15篇
  1980年   11篇
  1979年   7篇
  1978年   5篇
  1977年   12篇
  1976年   6篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Glassy polyimide membranes are attractive for industrial applications in sour natural gas purification. Unfortunately, the lack of fundamental understanding of relationships between polyimide chemical structures and their gas transport properties in the presence of H2S constrains the design and engineering of advanced membranes for such challenging applications. Herein, 6FDA-based polyimide membranes with engineered structures were synthesized to tune their CO2/CH4 and H2S/CH4 separation performances and plasticization properties. Under ternary mixed sour gas feeds, controlling polymer chain packing and plasticization tendency of such polyimide membranes via tuning the chemical structures were found to offer better combined H2S and CO2 removal efficiency compared to conventional polymers. Fundamental insights into structure–property relationships of 6FDA-based polyimide membranes observed in this study offer guidance for next generation membranes for sour natural gas separation.  相似文献   
82.
Radiolabelling is fundamental in drug discovery and development as it is mandatory for preclinical ADME studies and late-stage human clinical trials. Herein, a general, effective, and easy to implement method for the multiple site incorporation of deuterium and tritium atoms using the commercially available and air-stable iridium precatalyst [Ir(COD)(OMe)]2 is described. A large scope of pharmaceutically relevant substructures can be labelled using this method including pyridine, pyrazine, indole, carbazole, aniline, oxa-/thia-zoles, thiophene, but also electron-rich phenyl groups. The high functional group tolerance of the reaction is highlighted by the labelling of a wide range of complex pharmaceuticals, containing notably halogen or sulfur atoms and nitrile groups. The multiple site hydrogen isotope incorporation has been explained by the in situ formation of complementary catalytically active species: monometallic iridium complexes and iridium nanoparticles.  相似文献   
83.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
84.
Two novel inclusion compounds of 4,4′‐sulfonyldibenzoate anions and tetrapropylammonium cations with different ancillary molecules of water and boric acid, namely bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate dihydrate, 2C12H28N+·C14H8O6S2−·H2O ( 1 ), and bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate bis(boric acid), 2C12H28N+·C14H8O6S2−·2H3BO3 ( 2 ), were prepared and characterized using single‐crystal X‐ray diffraction. In the two salts, the host 4,4′‐sulfonyldibenzoic acid molecules, which are converted to the corresponding anions under basic conditions, can be regarded as proton acceptors which link different proton donors of the ancillary molecules of water or boric acid. In this way, an isolated hydrogen‐bonded tetramer is constructed in salt 1 and a ribbon is constructed in salt 2 . The tetramers and ribbons are then packed in a repeating manner to generate various host frameworks, and the tetrapropylammonium guest counter‐ions are contained in the cavities of the host lattices to give the final stable crystal structures. In these two salts, although the host anion and guest cation are the same, the difference in the ancillary small molecules results in different structures, indicating the significance of ancillary molecules in the formation of crystal structures.  相似文献   
85.
A facile hydrothermal method to synthesize flower-like Sn-doped ZnO (FLSn-ZnO) nanostructures is described. The obtained hierarchical architectures of FLSn-ZnO are found to be assembled with abundant regular-shaped nanosheets and nanoparticles. A possible formation mechanism is proposed on the base of a series of control experiments. The tests show that FLSn-ZnO architectures exhibit higher photocatalytic activity in the degrading Rhodamine B and tetracycline aqueous solution than pure ZnO under UV-light irradiation. And photocurrent response and photoluminescence of ZnO and FLSn-ZnO demonstrates that in photocatalytic performance, the latter is higher.  相似文献   
86.
The tunable ZnO nanorods (NRs) are produced due to the phytochemicals present in Cycas pschannae leaves which act as reducing and stabilizing agents. The confirmations of the ZnO NRs were validated using different characterization techniques: X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer, Emmett and Teller (BET), scanning electron microscopy–Energy Dispersive X-Ray Analysis (EDX), UV–visible spectroscopy, Raman spectroscopy, and transmission electron microscopy. The ZnO NRs show unique surface area and low particle size. Photocatalytic activity was measured and found to be 50.75% at low concentrations and 78.33% at high concentrations. The antioxidant activity of the ZnO NRs also showed promising results for their use in free radical scavenging. In vitro toxicity studies using zebrafish embryos was performed to evaluate the toxic nature of it and the obtained result confirmed its non-toxic nature. In addition, ZnO anticancer potential was verified using the A549 lung cancer cell line. Cytotoxic assessments of ZnO NRs were performed via 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and neutral red uptake assays to examine the cell death cycle on the A549 lung cancer cell. Dose-dependent apoptosis and necrosis were confirmed by Lactate dehydrogenase (LDH) assay. It was also confirmed that ZnO NRs induce Reactive oxygen species (ROS) and apoptosis inside cancer (A549) cells via different intrinsic gene expression. Thus, based on this research it is evident that an effective ecofriendly, nontoxic potential anticancer drug can be synthesized using C. pschannae leaf extract.  相似文献   
87.
Importing intramolecular hydrogen bond in phosphorescent transition metal complexes has been considered one of the excellent approaches to improve the electroluminescence performance of organic light-emitting diodes in real applications. However, the relationships between such H-bond structure and phosphorescent properties have not been theoretically revealed yet. In this study, two types of intramolecular hydrogen bonds are introduced into the two classes of traditional materials, that is, Pt(II) and Ir(III) complexes ( 1a and 2a ) to completely elucidate their influence on the structures and properties by comparing with the original phosphors ( 1b and 2b ) using density functional theory/time-dependent density functional theory for the first time. A comprehensive analysis of the geometric structures, molecular orbitals, and luminescence properties (including phosphorescence emission wavelengths and radiative and nonradiative decay processes) has been carried out. Our theoretical model highlights that complexes 1a and 2a embedded with H-bonds significantly promote the phosphorescence emission band blue-shifted and restrict molecular deformations compared with the corresponding 1b and 2b , which can provide helpful guidance to regulate and design several aspects of highly efficient blue phosphorescent emitters.  相似文献   
88.
In this work, kinetic of H2S conversion to H2 molecule on the surface of Pt(111) is studied using kinetic Monte Carlo simulation. The results of simulation were fitted to the experimental temperature-programed desorption spectra. The good agreement between the empirical and the simulated data confirms the proposed mechanism and kinetic data (activated energies and pre-exponential factors). The influence of variables such as temperature and concentrations of H2S and H2 on the overall results of hydrogen production is studied. The condition is proposed in which the best yield of reaction at minimum temperature is obtained. Results show that platinum is a perfect catalyst for converting H2S to H2 and it has a perfect performance (98%) after 5 μs at low temperature of 227°C.  相似文献   
89.
Herein a well-sealed and thermostated kinetics assembly is designed and built, which can run stirred at different reaction temperatures. With the reaction assembly above and the volumetric method together, the hydrogen peroxide (H2O2) decomposition reaction kinetics is systematically investigated under a variety of reaction conditions over a copper-doped buserite-type layer manganese oxide (referred to as Cu-buserite) as a heterogeneous catalyst. The overall second-order rate law is fitted out by the linear regression analysis, with the reaction orders with respect to both H2O2 and Cu-buserite determined to each be equal to 1, and then explicitly explained by the proposed Michaelis-Menten like mechanism. The apparent activation energy Ea is estimated as 33.5 ± 2.5 kJ mol−1.  相似文献   
90.
Single-crystal X-ray diffraction structures of the 5-amino-2-methylpyridinium hydrogen fumarate salt have been solved at 150 and 300 K (CCDC 1952142 and 1952143). A base–acid–base–acid ring is formed through pyridinium-carboxylate and amine-carboxylate hydrogen bonds that hold together chains formed from hydrogen-bonded hydrogen fumarate ions. 1H and 13C chemical shifts as well as 14N shifts that additionally depend on the quadrupolar interaction are determined by experimental magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) and gauge-including projector-augmented wave (GIPAW) calculation. Two-dimensional homonuclear 1H-1H double-quantum (DQ) MAS and heteronuclear 1H-13C and 14N-1H spectra are presented. Only small differences of up to 0.1 and 0.6 ppm for 1H and 13C are observed between GIPAW calculations starting with the two structures solved at 150 and 300 K (after geometry optimisation of atomic positions, but not unit cell parameters). A comparison of GIPAW-calculated 1H chemical shifts for isolated molecules and the full crystal structures is indicative of hydrogen bonding strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号